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THE TEICHMULLER THEORY OF HARMONIC MAPS

MICHAEL WOLF

1. Introduction

Let M be a smooth, closed, compact surface of genus g > 2, let .#Z_; de-
note the space of constant curvature —1 metrics on M, and let o|dz|? denote
a particular element of .#_;. The group of diffeomorphisms isotopic to the
identity, Diffg, acts by pull back on .#_;, and we can define the Teichmdiiller
space of genus g, Ty, to be the quotient space .#_;/Diffy. In studying
Teichmiiller space, it is natural to pick out a particular hyperbolic metric
from each class; here we choose as our representatives the metrics p|dw|?
which have the property that the map id: (M,o|dz|?) — (M, p|dw|?), which
is the identity as a map on M, is harmonic as a map of Riemannian manifolds.

Naturally associated to a harmonic map id: (M,o,z) — (M,p,w) is a
quadratic differential @ (o, p) d2%, which is holomorphic with respect to the
conformal structure of o. This then defines a map ®(o,-): T, — QD(0) from
the Teichmiiller space to the space of holomorphic quadratic differentials on
(M, o).

Sampson [17] showed that ® is injective and continuous; here we first show
(Theorem 3.1) that it is also surjective so that, via ®~!, QD(c) provides
global coordinates for Tg. The rest of this paper is an investigation of those
coordinates.

Thurston ([5], [22]) introduced a compactiﬁcation_@ of T, that differed
from the previous compactifications of T, in that the action of the map-
ping class group (isotopy classes of orientation preserving diffeomorphisms)
on T, extended continuously to the boundary BTg{'T. From the homeomor-
phism ®: T, ~ QD(0), we also obtain a compactification TE(U) of T, given
by adjoining points at oo to the rays of the vector space QD(c). We show
(Theorem 4.1) that T () is the Thurston compactification TE’T, and so T} (o)
is independent of the choice of ¢ as a base hyperbolic metric.

Naturally associated (see [10]) to a holomorphic quadratic differential ®dz?
is a pair of measured foliations on M, topological objects. At all points p € M
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where id: (M,0) — (M, p) is not conformal, there are two distinguished lines
in T, M along which the map stretches the most or the least. The foliations of
®(0,0) d2? integrate the maximal and minimal stretch directions where they
are defined, and it is natural to speak of the maximal or minimal stretch
foliation. We consider the asymptotics of a family of metrics g whose as-
sociated holomorphic quadratic differentials ®(o, p;) dz? form a ray t®q dz?
(t > 0) in QD(o); for such a family, the foliations of ®(c, p;) are constant
in ¢, and only the measures of the measured foliations change. The proof of
Theorem 4.1 proceeds by showing that, at all but the finitely many points
where id: (M, 0) — (M, p) is conformal, the transverse measure associated to
the minimal stretch foliation of ®(o, p;) dz? is asymptotic to half the amount
of the maximal stretch of id: (M, c) — (M, p:). So, in a very rough sense, the
measured foliations asymptotically approximate their associated metrics, and
so a projective class of measured foliations provides a natural limiting point
for the family of metrics {p;}. Moreover, since the measured foliations are
topological objects, we expect the boundary of T, which the projective classes
represent to be natural, in the sense that it will be independent of the base
point (M, o) in Ty, and that the action of the mapping class group on T, will
extend continuously to T_;‘.

Working locally, we find that the coordinates ®: T, — QD(c) are related
to the Weil-Petersson geometry of T,;. Using these coordinates, we describe
a simple recursive method for computing all of the variations of hyperbolic
metrics away from (M, o). Using that method, we find that the Hessian of
the total energy of a harmonic map, viewed as a function on T x Ty, is the
Weil-Petersson metric, and that the fourth variation of the total energy, in
the coordinates of ®, is a multiple of the Weil-Petersson curvature tensor.
This method has been used by Jost [12] to derive the Kahler structure and
curvature tensor of the Weil-Petersson metric via harmonic maps.

The idea of using harmonic maps to investigate Teichmiiller space is not
new. Indeed, in 1954, Gerstenhaber and Rauch [8] began a program aimed
at proving Teichmiiller's Theorem via harmonic maps; their difficulties were
finally recently overcome by Reich [14]. Earle and Eells [3] used harmonic
maps to portray the space of conformal structures as a trivial fiber bundle
over T, with fiber Diffy, and to give an explicit section from T} into the space
of conformal structures. Finally, while here we show a homeomorphism from
T, to QD(0) by fixing the source surface (M, o) and varying the target surface
(M, p) over T, Tabak [21], fixing the target surface (M, p) and allowing the
source surface (M, o) to vary over T, gave a bijection between Ty and a class
of nonholomorphic quadratic differentials on the target surface (M, p).
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The organization of the paper is as follows. In §2, we give the necessary
background, define our terms, and introduce our notation. §3 is devoted to
showing that ®: T, — QD(0) is a homeomorphism onto QD(o). In §4, we
construct the compactification T}*(¢) and prove Theorem 4.1: T} (o) ~ @.
The discussion of this is broken into subsections: in §4.1, we describe the
motivating example of the asymptotics of harmonic maps between hyperbolic
cylinders with boundary; in §4.2, we state the compactification theorem; and
in §4.3, we prove the compactification theorem using the technical results
about asymptotics of harmonic maps which are finally proved in §4.4. In
§5, we discuss the local geometry of the coordinates QD(c): §5.1 describes
our computational method, and §5.2 discusses the local geometry of the total
energy function.

This paper contains the results of the author’s thesis. It is a pleasure for
him to thank his thesis advisor, Steven Kerckhoff, for all of his help and Halsey
Royden for suggesting the problem and for many useful conversations.

Thanks also go to the referee for his careful reading of the manuscript, and
his detailed and very useful comments. '

2. Notation and background

Let M be a fixed, C* surface. Consider the metrics o|dz|? and p|dw|? on
M, where 2 and w are conformal coordinates on M. For a Lipschitz map

w: (M,oldz|?) — (M, pldw|?)
we define the energy density of w at a point to be

0. p) = p(w(2)) w. |2 p(w(?)) w=l?
6(11), ,,0)— U(Z) | zl + 0(2) | zl

and the total energy

E(w;o,p) = / e(w; 0, p)o dz dZ
M

= [ ptwElusl + ptw(euzl d= a2
M

so that evidently the total energy depends upon the metric of the target
surface, but only upon the conformal structure of the source.

A critical point of the energy functional is called a harmonic map; the
Euler-Lagrange equation for the energy functional is

T(w) = w,z + (log p)yw,wz =0,

which again depends on the metric of the target but only on the conformal
structure of the source.
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Now

w*p = pwwzdz* + (plws|? + p(|ws|?) dz dz + pw, Wz dz°
= ®d2? + oe(w) dz dz + B d72,

which defines

o JL|L, o Y., o L./, 2 g> 2
ddz _{4 l w,.8z , w,.ay . 2z w*az’w*ay dz*.
et (w()) (w(2)
Wiz Wiz
F(w)="2 jw, |* — BERE )2

o(z) o(2)
be the Jacobian of w. Then if # (w)(p) # 0, it is easy to show (see [17]) w
harmonic < 7(w) = 0 & ®dz? is a holomorphic quadratic differential. So if
w: (M,0) — (M, p) is holomorphic, we set

®(0,p) = (p) = (w*p)*°.

Define QD{(0) to be the space of holomorphic quadratic differentials on (M, o).
Now for any holomorphic quadratic differential o = ® dz? € QD(0), if a(p) #
0, there is a natural conformal coordinate ¢ = ¢ + i so that & = d¢? near p.
The curves £ = const and n = const define a pair of foliations with transverse
measures fhor(@) = ¢*|dn| and pvert(@) = ¢*|d€|, respectively. These easily
extend to where a(p) = 0 to give a pair of transverse (singular) measured
foliations associated to a, called the horizontal (Fyor(@), #nor(@)) and vertical
(Fyert(@), tivert (@) measured foliation of a, respectively. In the case where
® dz? is determined by a harmonic map, if z = z + ¢y and 9/dz and 9/dy
are tangent to the foliation in a neighborhood (where @ # 0), then §/dx and
9/0y are the directions of maximal and minimal stretch of the differential dw,

1 2
ddz? = i (‘ ) dz?
p

with the coefficients of dz? determining the transverse measure to the folia-
tions z = const and y = const.

Almost everything connected with a harmonic map between surfaces can
be written in terms of two auxiliary functions; indeed, much of this work can
be seen as a fugue on equations of these functions. So we define

9 2

W

Oz

i
*ay

P

N e
Z/—Z/(p)fz/( ip) = o(z) |lws|*,

Z =2 = Z (o) = L2
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Then, defining

4 92 - 20%logo 282%logp
= o0 KO =750 (0) == Swdw

on (M,o|dz|?), we find that the Euler-Lagrange equation gives the following
equations (see [18]):

(1) Alog# =-2K(p)# +2K(p)-L +2K (o), where #Z(p) #0,

(2) AlogZ = —-2K(p).L + 2K (p)# + 2K (o), where.Z(p) #0.

Now, we will restrict ourselves to the situation where K (o) = K(p) = —1.
Also, for most of the discussion, (M, o|dz|?) will be a fixed hyperbolic sur-
face, while (M, p{dw|?) will vary over T,. In the situation where the target
surface has negative curvature, Eells and Sampson [4] proved the existence of
a harmonic map in the homotopy class of the identity, Hartman [9] proved
its uniqueness, and, independently, Schoen-Yau [18] and Sampson [17] showed
that this map is a diffeomorphism and that # > 0.
Finally, we collect some formulas which apply to our source and target
surfaces of constant curvature —1.
(I) The energy density = e =2 +.%Z.

(II) The Jacobian = # = & ~ 7.
(IIT) The norm of the quadratic differential |®|2/0? = #¥.
(IV) The Beltrami differential v = wz/w, = ®/0#;
(V) while |v|? =% /#7.

(VI) Alog # =27 — 2. — 2.

(VII) Alog ¥ =2.F ~ 2% — 2 where £ #0.
(VIID) w*p = ®dz? + oedzdz + ® dz2.

(IX) @ =0#7D.

3. &: T, ~QD(0)

Let M be a fixed C™ surface of genus g, and o a fixed hyperbolic metric.
We represent each point in T by a hyperbolic metric; this determines a unique
harmonic map homotopic to the identity on M:

w = w(p) = w(a,p) : (M,0]dz|*) - (M, pldw|?),
and consequently a holomorphic quadratic differential ® € QD(0):
@ = &(p) = (0,p) = (w*p)*°.
This describes ® as a well-defined map @: T, — QD(0).
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Theorem 3.1. & is a homeomorphism from T onto QD(0).

Proof. Both Ty and QD(c) are 6g — 6 dimensional cells, so by Brouwer’s
invariance of domain, we need only show

(i) @ is continuous,
(i) ®is1—1,

(iii) @ is proper.

Property (i) is clear from the uniqueness of the harmonic map in each
homotopy class, and is probably first due to Sampson as reported in Earle-
Eells {3].

Property (ii) is also due to Sampson [17]; we include here for completeness
a slightly rearranged proof.

We combine (IV) and (III) to obtain, for h = log#,

Ah = 2e" —2|®}%e ™k — 2,
Consider p; and p, hyperbolic metrics representing different points in T}, and
let ®; = ‘D(‘pi).

Suppose ®; = &; = ®. Using the obvious notation, we claim that then
h1 = hg, for if h; > hs somewhere, we can look at a maximum of h; — hg and
find that

0> A(hy — hg) = (e™ — ehz) —[®2(e™? —eh2) > 0,
since at such a maximum h; > hg. So ki < hg and, symmetrically, ho < Ay,
proving the claim. So # = %, and since #.4 = |®|? = #.% and & > 0,
we find that 4 = .%5. Consequently e; = ez, and (VIII) then shows that
w1*p1 = wa*py so that wy o wy': (M, p2) — (M, p1) is an isometry isotopic
to the identity.

We are left to prove the properness of @. Define ||d>(p || = [, |®|dzdz.
First prove

Lemma 3.2. ||®(p)]] — o0 & E{p) — oc.

Proof. Since # — % = ¥ and [ _#odzdz = —2x), we have

//70 dzdz + 2wx = /_70 dzdz = /<I>u dzdZz since the integrands agree
< / |®|dzdz since £ > 0 implies |v| < 1
= /%lukrdzdi by (IX)
< /Z?adzdi=/3adzd2—"27rx.

So by adding the first two and the last two equalities we find

/eadzd?+27rx§2/|<1>|dzd§§/eodzd2—27rx,

proving the lemma.
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So to show the properness of ®(p) : T, — QD(c), we only need to show

Proposition 3.3. E(p): T, — R is proper.

Remark. Schoen-Yau [19] proved the properness of E(o): T, — R, where
E(c) = E(o, po); here po is a fixed target hyperbolic metric and the source o
varies over Tj,.

Proof. We need to show that B = {p € T,: E(p) < K} is compact
in T;,. We denote by I,([7]) the p-length of the geodesic representative of
[v] € 71 M; it suffices to show that ,([7]) < e2(0)K*/21,([4]). This will follow
immediately from the Courant-Lebesgue lemma (see [11, pp. 19-20]): we w111
show that if d,(21,22) < § < ¢1(0), then

dp(w(z1), w(z2)) < 4V2r K/ (log(1/6)) /2.

Before starting that, we rid ourselves of an unnecessary complication; since
w: (M,0) — (M, p) is harmonic and homotopic to the identity, the identity
map id: (M,0) — (M, w*p;) is harmonic. But since T, consists of classes
equivalent under the action of Diffy, we might as well have originally chosen
w*p; to represent the class [p;] € T,. So we will assume for this argument
that p; was chosen so that id: (M, o) — (M, p;) is harmonic.

Now, suppose dy(7;,72) < 6§ < min(l,inj(0)?,1/(A?)), where —A2 is a
lower bound for K (o), the curvature of . Of course the restriction on K (o)
is not really needed here, but we include it to show the role of curvature.
Now introduce coordinates (r,8) so that z1, 3 € By(z0,6) for some zo and
ds? = dr? + G(r,0)% d¢*.

Indeed G(r,8) = (1/A) sinh Ar for the metric of constant curvature.

So if z3, 24 € By (z0,7), then
27 2 1/2
df <27 (/ dﬂ) .
P ~\Jo P

Let A = A(zo,6,6'/?) be the annulus centered at zo of inner radius § and
outer radius §1/2, distances being measured in _the o metric.

0

06

5}
a6

27
(3.1) do(z3,24) < /

0

K > E(o,p) 2 //eodzdi
9
(3.2) / / ol 5] *Grds
= 2 80 )
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Since G(r,8) = (1/A)sinh Ar, for r < §1/2 < 1/A we find that G(r) < 2r and
therefore

s1/2
dr 1 1

So we can find some r € (§,§1/2) with

|1 9 112 1\ !
- < Z .
A 30 pd0_8vK(log6)

For that choice of r in (3.1), inequalities (3.2) and (3.3) yield

1\ 12
dp(T1,22) < dy(23,24) < 4V21 K2 (log 5) .

Remark. Classically, much of Teichmiiller theory has been based on the
study of the Beltrami equation ws = uw,, where the parameter u belonged to
some (typically) infinite dimensional function or tensor space; an appropriate
equivalence relation is often required to pass from the parameter or solution
space to Teichmiiller space. Theorem 1.1 implies that we can solve

(3.4) Alog# = 2% ~ 2|92 /(0*#) — 2

on a Riemann surface (M, o) for any parameter ® € QD(o); then dsf,(q,) =
®dz? + o(F + |82/ (02#)) dzdz + Bdz> is a hyperbolic representative of a
point in T}, determined by and determining & uniquely. So we can interpret
Theorem 1.1 as saying that Teichmiiller space can be studied through (3.4),
where the parameter space is finite dimensional and no equivalence relation
needs to be applied.

We will study the variational theory of this equation in §5.

4. The harmonic maps compactification of T,

Since ®: Ty — QD(o) is a homeomorphism onto QD(c), the vector space
QD(o) provides coordinates for T, centered at o, as well as some distinguished
submanifolds in Tg. In particular, let &, € QD(o) be a nonzero holomorphic
quadratic differential on (M,c). Then t®o, t € R, t > 0, is a ray in QD(o)
with vertex at 0. Via the homeomorphism ®, t®q; determines a family of
metrics p; with pp = o so that p; leaves every compact set of 97}; on the other
hand, t®¢ also determines a family of measured foliations on M as described
in §2. In this section we describe an asymptotic relationship between the
family of hyperbolic metrics {p; } and the family of vertical measured foliations

(Fvert (tq’o), Hvert (t(I)O) ) ,
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4.1. An example. We begin with the example of M being a hyperbolic
cylinder with boundary in which both families can be explicitly described.
Specifically, we realize (M, o) as the rectangle [—1,1] x [0,1] in the z-plane
with metric ds? = dz? + dy® (identifying [—1, 1] x {0} with [-1,1] x {1} to
obtain a cylinder), and (M, p;) as the rectangle [— cosh™' ¢,cosh™* ¢] x [0,1]
in the w-plane with the metric ds?® = du? + [(cosh? u)/t?]dv? (identifying
[cosh™1¢,— cosh™!t] x {0} and [cosh™'¢,—cosh™! ] x {1} to obtain a cylin-
der). Then p; has constant curvature —1, while ¢ has vanishing curvature,
which is of no consequence for us since, as we noted earlier, only the conformal
structure of the source manifold is important for the harmonic map equation.
The metric p; is normalized so that the curves u = +cosh™! ¢ have p;-length
1, while the curve u = 0 has p;-length ¢ = 1/¢.

Yy w=u-+v v
u = u(z)
l . l |
T 7 ‘ u
-1 1 —cosh™t cosh™1¢

ds2 = dz? + dy? 1
dsf,' = du? + (—ﬁ coshzu) dv?

FIGURE 1

We consider maps w : (M,0) — (M, p) with the boundary condition that
w(%1,y) = (£cosh™'t,%); because of the symmetry of the situation, we can
describe the harmonic map in this class as w = u+ v, v =y, u = u(z). We
easily compute the Euler-Lagrange equation in this one-dimensional case to
be

u'(z) = 2—15 sinh2u, u(0)=0, wu(l)=cosh™'t.
We consider the solution -
w=zcosh 1t+ B(z), B(0) = 0= g(1),

so that 3 represents the deviation of the map from being affine.

It is not hard to show that 3 — 0 ast — co. So for ¢ very large, w = u+1v
deviates very little from an affine stretch. We can rephrase this in terms of
vertical measured foliations as follows. The holomorphic quadratic differential
®, associated to p; is given by

2
) dz®.
Pt

1
-

LRIk

U bz

9
oy

Vx

Pt



458 MICHAEL WOLF

It has a vertical foliation given by the curves z = const in the z-plane, and
a transverse measure of
2\ 1/2
) |dz],
Pt

! U
2

the coefficient of which, being both real and holomorphic, is a constant. So
given a horizontal line segment ~: a < x < b, the vertical measure of this
0 0

segment is
9\ 1/2
. Ve — dz
az [43 ay Pt)

b
i(Fvert(q:'t)a'Y) =/ '1'( u
5 l0.0/0y12,
5 (l - ||u*a/aznz,) o

8 2

"9z

o2
*ay

43

2

a 2
U*EE

- /" 1
e 2
On the other hand, the p;-length of w(vy) is

b
tfw) = [ gz

so that, since |[v.8/9y| o, /llusxd/0z]|,, — 0, we find

i(Fvert (q:'t)y '7)
3o (w())

So the import of w deviating very little from an affine map is now clear:
topologically (the minimal stretch), vertical lines that are equally spaced with
respect to the p; metric, will, when pulled back to the z-plane, converge to
vertical lines that are equally spaced with respect to a measure for the vertical
foliation. Moreover, we could go on to show that given any arc ~, the ratio
of half its p;-length to its measure against the vertical foliation of ®; goes to
unity; this means that the asymptotic ratio of p; lengths of two arcs -y and
~2 is determined by the ratio of their measures against any ®; foliation, which
is a topological object on the cylinder.

4.2. Statement of the compactification theorem. We want to gen-
eralize this situation to compact surfaces of genus ¢ > 2; in order to make
a precise statement we first describe the Thurston compactification ﬁ of
Teichmiiller space. (A good reference for this is [5].) Let . be the set of
isotopy classes of simple, homotopically nontrivial curves on M, let .#F be
the space of measured foliations up to isotopy and Whitehead moves, and let
MAF* be the space of nontrivial measured foliations on M up to isotopy and
Whitehead moves. Let m: RY — 0 — P(R) be the natural projection onto
the projective space of functionals P(Rf_’ ).

dzx,

Pt

— 1.
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Let p be a hyperbolic metric on M; then for each class [4] € &, there is a
unique p-geodesic v € [v] representing [4] on (M, p), and we can measure its
p-length, [,(). Thus we have maps

I: T, -~ R -0,
poly: >Ry

and, in fact,
mol: T, —»'P(Rf)
is an injection (see [5]). We can also assign a functional to each nonzero

measured foliation (&, u) € .#F *: we define the intersection number of [~]
with (&, p) to be

i slol) = int [
~

the infimum of u-transverse measures of representations of [v]. So we get
another map

I: #F* - R -0,
(F )= (F,u): L >Ry

which is also an injection; we identify .£% * with its image in R‘f . Finally we
define the space of projective measured foliations to be RF = roI(#F *) C
PRY).

The Thurston compactification is j‘gii = 7o l(Ty) UFF with a topol-
ogy induced from the topology of PR‘f (see [5]). Thurston proves that
PF ~ §%9-7 and that T—g”‘- C P(RY) is a compact manifold with bound-
ary, homeomorphic to a closed ball with boundary sphere % .

By construction, Thurston’s compactification of T, does not depend on a
choice of base point within Ty, and since the mapping class group I'y acts
continuously on .#% , its action on T, extends to Tzi. This compactification
should be contrasted with Teichmiiller’s compactification of T,: by attaching
points at oo to Teichmiiller’s embedding of T, into QD(¢) we obtain a com-
pactification T_g'(a) which does depend on a choice of base point in Ty, and
on which the action of the mapping class group does not extend continuously
to 0T (o) [13].

Define, recalling that ||®|| = [,, [®|dzdz,

BQD(c) = {® € QD(0): ||®|| < 1},
SQD(e) = {® € QD(0): ||&}l = 1},

BQD(o) = BQDUSQD with the QD(c) topology.
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Now we define a map

&: T, — BQD(o)
given by ®(p) = 4®(p)/(1 + 4||®(p)||). Clearly ® is a homeomorphism onto
BQD(c). Using ® to identify T, with BQD(o), we define a new compactifi-
cation of 7,

Th(o) =T, USQD(c) = BQD(0).
The goal of the rest of this section is to prove

Theorem 4.1. T#(o) ~ 7‘97’7.

Corollary 4.2. T_g(a) = TQ’T 1s independent of the choice of base point
o. The action of the mapping class group I'y on T, eztends continuously to
an action on TQF. T_;l * T—f. '

Remark. Theorem 4.1 provides an internal ray structure to Thurston’s
compactification of T from each point ¢ of Tj.

The proof of Theorem 4.1 depends on a description of the asymptotics of
the Beltrami differentials for the harmonic maps.

Proposition 4.3.. Let &9 € SQD(0). Let {p:} = @71 {tPy,t > 0} be the
family of hyperbolic metrics determined by t®q. Let v(t) € Belt(o) be the fam-
ily of Beltrami differentials determined by the harmonic maps w(t): (M,o) —
(M7 pt); i'e';

v(t) = w(t)z/w(t)..
Then i o(p) # 0, PP 1 1.

We postpone the proof of this proposition until §4.4.

By construction, the foliations of ®(p:) = t®¢ are fixed for all ¢; only the
measures of the measured foliations associated to t®q change, and Proposition
4.3 can be understood as describing the asymptotics of these measures as
t — oo. Towards this end, let §/dx, d/dy be an orthonormal frame field
on (M,0) (away from the zeros of ®,) tangent to the horizontal and vertical
foliations, respectively. Then, by construction, 8/dz and 3/dy are also the
directions of maximum and minimum stretch of the differential map dw(t).
So in these coordinates,

9 2
— == dz?,
0z P ay ﬂj

1
woe |
()| = L0799l /10/0z ],
T3 19/3l,./18 /04l
Let ||v]ls(p,) be the norm given by the (singular) flat metric ds3,, =
t|®o|[dz? to a vector v € T, M, ®o(p) # 0. Then
2
Pt) .

5 112 _1( 112
2(p) 4

2

5}

5}

(4.1) 5

dz Az

143
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Thus we can rephrase Proposition 4.3 as
Proposition 4.4. Let p; be defined as in Proposition 2.3. Then

(i) (10/09l15./110/02\,,) L O for all points p with ®o(p) # 0.

(i) 1 > (2”8/(%“@(“)/HB/B:EHP,) 11 for all points p with ®y(p) # 0.

Corollary 4.5. Let l,,(7) denote the p.-length of the arc ~.

(a) Then ||0/8ylpll,, — O at almost all points p.

(b) If v is a closed arc of the horizontal foliation of t®g, and v does not
contatn a zero of Vg, then there are constants Cq and C, depending only on
~ so that

0<Co <, (Wt <C < oo
(c) If v is an arc of the vertical foliation of t®g, then
l,,‘('y)t‘l/2 —0 ast— oo

We postpone the proof of Proposition 4.3 and Corollary 4.5 until §4.4.
4.3. Proof of the compactification theorem. Define
8: BQD(0) - MF C R
® s B(®)
so that B(®) is the vertical measured foliation (as an element of R‘f ) of
o= 12
=] _

By a theorem of Hubbard and Masur [10], 8 is a homeomorphism of BQD(0)
onto #F C R{. As a consequence, we find that if ||®,] — 1, then @,

converges in BQD(o) < 7 o 3®,, converges in P(R‘f ).
We will understand the notation 8(®) to mean

B(8(®)) = B(4®/(1 + 4f|2l))).

Because 8% and G(®/||®||) represent measured foliations which have the
same underlying foliation and differ only their transverse measures, for [v] €
&, we have

(52, 1)) = 12} 2i(B(@ /11, )-

Lemma 4.6. For all classes [y] € &, there exist ko = ko(||D(p))l,[7])
and n = n(||2(p)|l,[7]), both depending on ||B(p)| and [1], so that

kot (82(p), [V]) + 0 2 Lp([7]) 2 ¢(B2(p), (1),
where ko | 1 and n||®(p)[| 772 — 0 as ||®(p)|| — co.
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Proof. First we prove ,([v]) > (6®(p), [7]). Let ~:[0,1] — M be the
constant speed parametrization of a p;-geodesic. Let 4y, 4, denote the hor-
izontal and vertical components of # relative to the horizontal and vertical
foliations. Then

1
. N 1/2
LD =t = [Vl + 1l ds

> / il ds

> /”’m”w(p) ds by Proposition 4.4(ii)

= i(8%9(p), ) = 1(B2(p), [N])-

Next we prove koi(8®(p), [¥]) + 7 > 1,([7]). This estimate requires a little
preparation.

First, we claim that for every [y] € % there are numbers &([v]), K([v]),
and L([~]) so that for every ® € SQD(c), there is a representative o € [1]
so that

(i) all of the unbroken segments of ~ lie along leaves of either the hori-
zontal or vertical foliations,

(ii) all horizontal segments of 7o avoid a neighborhood of o-radius e([4])
of the zeros of @,

(iii) (6P, Yo ) = ¥(5®, [’7])a

(iv) {(B(—P),va) < K([7]), i.e., the total length of the vertical arcs, when
measured in the metric |®]|dz|?, is uniformly bounded by K([4]); also o
contains fewer than L([~]) vertical arcs through zeros of .

We first prove this statement for a neighborhood of an element ®, €
SQD(o). Now the zeros of ®g, say {p1,- ' ,Dn}, are isolated; then there
is a 6(®o) so that each disk Bas(a,)(pi) of ®o-radius 26(®p) around a zero
contains only one zero of &g, is topologically a disk, and is separated from
any other such disk, Bas(a,)(p;), by a ®o-distance of at least 25(Po). We also
assume that

6(®o) < (q)egéig(c) (injectivity radius of |®| ldzlz)) /(8¢ —T).
We then can consider a small neighborhood N of ¢ in SQD(e) with the prop-
erties that if & € N, then (a) the natural correspondence between the con-
nected components of Uy, (,)~0 Bs(2,)(p) and the connected components of
Us(p)=0 Bs(20)(p) is a bijection, (b) each connected component C of
Uq,(p)___o Bs(a0)(p) is a topological disk separated from the other connected
components by a ®-distance of at least §(®g), and (c¢) a connected vertical
arc in C has ®-length of at most K(®p). (The point here is that in N, a
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deformation neighborhood of ®y, we permit high order zeros of ®g to split
into lower order zeros so near each other that a neighborhood of them is still
topologically trivial, but we do not allow the neighborhoods of the isolated
zeros of ¥y to migrate too near each other.)

Now we construct vg. We start with a geodesic T's (of the metric |®||dz|?;
see [20, Chapter V, especially Theorem 18.4]) which, by virtue of being quasi-
transversal, satisfies condition (iii). Outside of Ug,)=0 Bs(20)(P); T'a is lo-
cally a line of constant argument in the plane, and we can replace it there by
a step-curve of arcs of the vertical and horizontal foliation, whose horizontal
measure agrees with the original horizontal measure, and whose ®-length of
vertical arc is less than the original ®-length of the curve. Inside one of the
connected components of U<1>(p)=o Bg(s,)(p), say C, we notice that there are
at most 4g — 4 zeros of ® and 12g — 12 connected components of vertical arcs
which have a zero of ® as an endpoint (the latter we call critical vertical arcs).
Let 43 be a connected component of 'y N C. (There are only finitely many
such components: since SQD(o) is compact, the minimal ®-length of [4] is
bounded above, while the injectivity radius is bounded below and away from
(8g — 7)6(®o). So, because of the convexity of Bs(a,)(p) in the & metric,
an arc of 'y can pass through C only as many times as there are zeros of
® in C, and after doing so, it must travel at least §(®g) before returning
to C.) Then Ag will either cross or contain each critical vertical arc at most
once, since both 4g and the critical arcs are $-geodesics. We can then replace
the subarcs between such intersections with a ®-polygonal curve, all of whose
horizontal subarcs are outside of C, by a process of dragging the horizontal
measure out of C on vertical arcs as illustrated in Figure 2. This process
will preserve the horizontal measure of 4¢ while adding only a finite amount
of vertical measure and a bounded number of critical vertical arcs, the last
two because we have assumed that all connected vertical arcs have ®-length
bounded by K(®g), and we use fewer than 2(4g — 4)? of these arcs in the
process of “dragging” the horizontal measure out of C.

Since now all of the horizontal arcs avoid a neighborhood of ®-radius ()
of the zeros of @, the horizontal arcs avoid a neighborhood of o-radius €(®g) of
the zeros of ®. So we have accomplished (i)-(iv) in a neighborhood N of ®o.
Since SQD(o) is compact we need only a finite number of such neighborhoods
to cover SQD(0), and we find we can assume (i)—(iv) for all ® € SQD(o).

Let Mc((4))(p) = M ~ Ug(p)(p)=0 Be(j]) (P) Where Be((y))(p) is now the
open ball of o-radius ¢([y]) around p. Let 9/dz denote a vector field on a
coordinate patch on M, tangent to the horizontal (maximal stretch) foliation,
undefined in very small neighborhoods, say of o-radius £([4])/10, of the zero
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horizontal foliation = solid leaves

FIGURE 2

of ®(p). Let

l0/9z[pll,

k2(p7€([’7])) = pGME([“I])(p) m’

ko is independent of the o-length or orientation of {9/9z}, which is why we
could be slightly sloppy in defining {3/9z}. We next notice that kz(p, e([+]))
is upper semicontinuous as a function of p in T,. To see this, we first ob-
serve that, for any 6 > 0, if p is sufficiently close to po in T, then M,((y})(p)
is contained in a neighborhood of o-radius 6 around M((y})(po). (If not,
then there would be a § > 0, a sequence of metrics p, — pg, and a se-
quence of points T, € Me((y))(pn) 50 that dy(zn, Me((4))(p0)) > 6. But,
after possibly passing to a subsequence, we can assume z, — zg, and since
®(p)~1(0) varies continuously with p, we notice that d(z,,®(p,)"1(0) > ¢
implies dg(zo, ®(po)~'(0)) > €. Therefore, 2o € M,([4))(po) and it could not
have been true that dg(z,, M¢((4))(P0)) > 6 for every z,. Note that this ar-
gument hinges on our choice of M¢((y))(p) as being the complement in M of
open balls.)
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Thus, for p close to po, a point ¢ € M([)(p 0) at which

m 0/0 0/0
e (10/2l/10/2aplls )

is obtained must lie within a é-neighborhood of M([4))(po). So, using that
16/0z|pll,/11/02|p]ls@(p) is continuous both in p € M and p € T,, we find
that k2(p, e([7])) < k2(po,e([7])) + &, or that k, is upper semicontinuous as a
function of p € T}.

Let &9 € SQD(c) and define k,(®o) = ko(®71(rdg),e([N])). kr is ke
restricted to the coordinate sphere of radius r in QD(o), parametrized by
SQD(o), and «,(®o) is upper semicontinuous on SQD(¢). Since SQD(o) is
compact, we may define

ko(12(o)II, [7]) = 0o 22X K||q>(p)||(<1’o)

Moreover, since (||0/0zpllo-1(re0)/110/0zlpllare, | 1) for fixed p € M as
r — oo by Proposition 4.4(ii), we find that, for fixed ®¢ € SQD(0), ,(Po) | 1
as r — oo. Consequently ,(®Pg) is a family of upper semicontinuous functions
on the compact space SQD(¢), pointwise decreasing monotonically to 1. So
by Dini’s Theorem (cf. Royden [16, p. 162]), «,(Po) converges uniformly to
1. :

So ko([®(0)ll,[]) | 1 as |[®(p)|| — oo, the monotonicity coming from the
pointwise monotonicity of )¢ () (®o)-

We now show the estimate kot(8®(p), [7]) +n = L,([7])-

Let vyx: [a,b] —» M be a parametrization of a horizontal arc which avoids
a neighborhood of o-radius €([4]) of the zeros of ®(p). Then vn C M () (p)
and

b
() = / Finll, ds

[l
/”’Yh“fiq’(ﬂ) ||7h||4<1>p(p)

_lmlle /
=9 Rellia) ds
Th ”’7h”4q>(p) ||f7h”4<l>(p)

< k2(p, e([)))i(B2(p), 1)
< ko([12(0) I, €(1]))i(B2(p)s Wn)-

Next let ~,: [a,b] » M be a parametrization of a vertical arc. Then
1(B®(p), o) = 0; on the other hand, Corollary 4.5 implies that

(lo-1a o)/l (W) 172 =0 ast — oo,
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Because the total ®-length of vertical arcs of 7y is bounded by K ([~]) of which
fewer than L([y]) subarcs are critical vertical arcs, we recognize that the
total o-length of the vertical arcs is bounded. We conclude that there is an

n([12(p)]l (7)) so that

> llw)<n and @) —0 as [8()| — oo.

~yvert

Then, letting v = va(,),

L)) < () = Z Lo(1n) Z Lo (1)

~nhor Yvvert
S ko) i(B2(p), ) +1

= koi(6%(p), ) +7

= koi(B®(p), [v]) +n

with ko([[®(p)l, (7)) | 1 and 7|®(p) (|72 — 0 as [|®(p)]| — oc.

We recall the maps mo!l: T, — P(RY) and 8: QD(0) — .#F C R that
opened §§4.2 and 4.3.

Lemma 4.7. Let pp — 0Ty, i.e., pn leaves all compact sets in Ty. Then
mol(pn) converges if, and only if, m o f®(p,) converges, and in the case of
convergence, the two sequences have the same limit.

Proof. The topology of T, is defined by a finite number of curves v1, -+ , &
for which, for any & € SQD(), 3_;i(8%o, [v;]) > 6 > 0 for some §. Sup-
pose 7 o I(p,) converges; then there exists a sequence of scalars A, > 0 so
that A,!(pn) converges in Rf to a nonzero functional in R_{” . In particular,

An(lon (I1))s 1o, ([¥2))s -+ 5 8p. ([7&])) converges to a nonzero vector in R¥, and
s0
k
¢> Y Al (b15))
=1

k
Z (B®(pn),[v;]) by Lemma 4.6

= Anll®(pn) ]|/ Zi(ﬂ@(pn>/||¢>(pn)|l, &)

> (Anll@(en)lIM/%)8.

Thus, A\, = O(||®(pn)]|~/?) and so for [y] € & and n(||®(pn)ll, [7]) as in
Lemma 4.6, A,n — 0 as n — oo. Then since ko (||®(pn)],[7]) — 1 as n — o0,
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and

Ani(B8(pa)s () = Al @ (o) 12 (i(B(2(0n)/ 12 (2)l, (1))

6 (B8P0, [7])s
<c/ %Enslg-f)(o)l(ﬂ 0> [7])

Lemma 4.6 gives
Anlon ([7]) — Ant(B2(pn), [¥])| — 0.

Thus, m o 3®(p,) converges to the same limit as 7 o [(p,). The converse is
analogous.

Proof of Theorem 4.1. By dint of Lemma 4.7 we are left with an easy
exercise in point-set topology. Define ¢: T, U #F = ﬁ C P(Rf ) —

BQD(o) by
(limn ﬂg-gi}", 1) if z € 8T, C P(RY) and z, — 7,
Y(z) = .

(ﬂ%%n %) if z € T,
where we use polar coordinates (4,7) for BQD(0): § € SQD(0), r € [0,1].

We first show that 9 is well defined. Suppose z, — = € 9T, C P(Rf )
and z;, — z. Then by Lemma 4.7, lim7 o ®(X,,) exists and is equal to
lim 7 o B®(z),). Furthermore, since 3: BQD — .#% is a homeomorphism,
lim, ®(z,)/||®(z,)|| exists and equals lim, ®(z.,)/||®(z} )]l

Next we claim that ¢ is a homeomorphism onto BQD(c). First we note
that % is continuous. Suppose z, — z € 9T,; we need to show ¥ (z,) — ¥(z).
Since z, — 9Ty, ||®(z,)|| — oo which implies 4||®(z,)||/(1 + 4||®(zn)||) —
1. So % is continuous in its second components; it is continuous in its first
components by definition.

The injectivity of ¥ on T, follows from Sampson’s theorem [17] on the
injectivity of ®: T, — QD(o). Suppose then that z, =’ € T, and ¥(z) =
¥(z'). We can further suppose z, — = € 3T, and z}, — 2’ € 9T, and so by
hypothesis,

lim @(2a)/|8(2a)]| = lim @(z})/1@(z})]
Thus
lirrlnﬂ' o B®(z,) = li1rln7r o f®(z;,),

and Lemma 4.7 implies that z = lim, z, = lim, z}, = z.

Theorem 3.1 shows that ¢: T, — BQD is surjective. To show that it is
surjective as a map 07T, — SQD, we suppose 6 € SQD and r,8 — 8. Then
7o 3(r,#) converges (actually, is constant), and Lemma 4.7 says that ®~1(r,0)
converges to a point £ € dT,. Since ¥ is continuous,

¥(z) = lim ¢('7n6) = lm(9, r) = (9, 1).

So % is surjective.
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Finally, we claim %~! is continuous. So we suppose (0,,7,) — (6,1),
and we show ¢~1(6,,r,) — ¥~1(6,1). Since (8,,7n) converges 7o B(rnby)
converges and so, by Lemma 4.7, 7 o & 11,0, = ¢~ 1(8,,75) converges to
z € 9T,. Since, by definition, ¢(z) = lim(0,,r.) = (4,1),

vi0,1) =2z = 11111111/1_1(0n,rn).

This concludes the proof of Theorem 4.1.

4.4. Proof of Proposition 4.3 and Corollary 4.5.

Proof of Proposition 4.3. Let My = M ~ g, (y)=0 Be(p) where B:(p)
is a ball of o-radius ¢ around p. Recall that |v(¢)]? = £ (t)/#(t) and 0 <
[v(t)]> < 1. Then

[.6-%)" 525
=/ (F —Z)/2 dA(o)
M. AN A(M)

where A(M,) = the o-area of M,
/2 1/2
< ( # - ) dA(a)) ( 1 dA(a))
M, A(Me) M, % A(Me)
by Cauchy-Schwarz

=(M;’°? o Z?ff;))>l/2( iiﬁ?-wfsmi?éﬁ))m
1/2 1/4
S(Mf? gd?(a)> (MET;%\(Z)))

But Z —.%Z >0, and by Gauss-Bonnet

Alo) 4r(g-—1)
T "’C"A(M)< AR

however, # (t).Z (t) = t2|®¢}2/0?. So, for all € > 0

(4.2) /Me( _%)1/2 di(o) < tl%.(/Mc %(M(U))lﬂ

— 0 ast-— oo.

Next we claim that (|v(t)|?)’ > O for ¢ real and nonnegative, where we
use primes to indicate differentiation with respect to ¢t. Since & (t).Z(t) =

t2@ol?/0?,
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2|®o[2 2
A%l 2

(4.3) XL P = :

Then, if ®(p) # 0,

AL t#0.

(4.30) 2w+ Tm=1

We first show that #” > 0. From (IX) we have
2@ [* = o2 |v (1),
so taking a derivative with respect to ¢ gives
0 < 2t|®p|?2 = 20277 |v|? + o222 (|1|2Y.
Sampson [17] and Schoen-Yau [18] both show that # > 0. So
(4.4) A (WP +#' WP > -
Now suppose #' < 0 somewhere on M. Suppose pg is a minimum of #7/#;
naturally #”(pp) < 0. Also, since Alog# = 2#(1 — |v|?) — 2 by (VI), by
taking time derivatives we find that, at the minimum pg,
0<AZ'|# =27 (1 - |v]?) = 2Z(|v|?)
=27 -2 + Z (v?))
<2 4 2#'|v|? by (4.4)
<0 since #'(pg) <0 by hypothesis.
The contradiction shows that #’ > 0 for all ¢ and at all points on M.
We now prove (|v(t)|?)’ > 0 by applying the maximum principle to (VI).
Suppose that p; is a maximum of #”/# . Then writing

Alog # = 2% — 2. — 2,

on differentiating we find, at py

2’
. >A— =27 -2%
(4.5) 02 A =27 - 2.9,
and so & (p;) <.Z’(p1). This shows that ®(py) # 0, as otherwise Z(p1) =0

and

%I (
0< (Pl) < Z (P1) —0.
Z(p1) — #(p1)
Thus Z'(p1)/# (p1) = 0, and #'(p)/# (p) = 0 for all pon M at the partic-
ular time ¢ > 0 since p; was a maximum for #'//Z. But this is impossible

since then 0
0:/;”:—/3’:—;/3<O,

(the last equality by (4.3)). Hence ®(p1) # 0, and Pg(p1) # 0.
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(4.3a) now implies that p; is a minimum for #’/.% on M ~ {®;!(0)}.
Since & —.% = _# > 0 on M by the theorem of Sampson [17] and Schoen-Yau
(18], we find that (4.5) gives

2 , L) | Z(p)
Zla) ~ L) = Z(m)

Z'(q)

Q) for g € M ~ {®51(0)},

2

so that Z'% —Z#" > 0 on M ~ {®;'(0)}. Since (|v|?) =
(P'H —Z'F)/Z?, and |v(p)|2 = 0 for all t if Dp(p) =0, we find that

(4.6) (lu(p)|?) >0 forallpe M.

Our arguments thus far show that |v(t)(p)|? is (by (4.6)) monotone increas-
ing in ¢ and (by (4.2)) converging almost everywhere to 1 to M ~ {®;(0)}.

Finally, we need to exclude the possibility that |v(t)(p)|? — & # 1, with
®y(p) # 0. (The author wishes to thank Professor W. Craig for pointing out
the following argument.) We consider the function log [v(t)|?. Equations (VI)
and (VIII) taken together yield, away from the zeros of ®q,

(4.7) Alog|v|* = Alog% = —4,7(¢) <0 since Z(t) > 0.

Also, log |v(t)|? is monotonically increasing on M, by (4.6). Since log |v(t)|
is bounded below on M., we see from (4.2) that log |v(t)|? — 0 almost ev-
erywhere (dA(c)) on M.. We now represent (M,o) as H?/T, where T is a
discrete group of isometries of H?; in particular, we consider a fundamental
domain F in the unit disk model of H? for the action of I'. Thus we can
consider M. as a domain F, in the disk, so that

Alog|v(t)|* <0 on F;
holds with respect to the Euclidean Laplacian. So log |v(¢)|? is a monotoni-
cally increasing family of superharmonic functions on F,. A standard theorem
(see e.g. Tsuji [25, p. 42, Theorem I1.16]) then implies that the limit function
log |v(00)|? is also superharmonic in the sense of being lower semicontinuous
and satisfying

log|u(oo)*(a0) 2 7 [ loglulco)P(ardras
TR lza—z0|<R

for all R with {|z—z¢| < R} C F. where z = zp+re*’. Since log |v(00)|? = 0 al-
most everywhere (Lebesgue) on F¢, the above inequality shows that log |¢/(00)|?
= 0 everywhere on F¢, and so |v(t)|? 1 1 everywhere on M,. Since £ was ar-
bitrary, we find that |u()|? 1 1 at all points with ®g(p) # 0.
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Proof of Corollary 4.5. (a) Suppose ||6/8y||p, > 6 > 0on aset Aof
positive measure with p € A. Then on A,

F (w(t)) = 0/0z|l,, - 10/8yllp, > 110/0|,p.8.

Since [|8/0z|,, > 2t|®o)*/2 — oo, we have [, Z (w(t)) dA(c) — oo, which is
impossible.

(b) We recall that 9/0z is tangent to the horizontal (maximal stretch)
foliation, and ||0/0z||c = 1. Then

10/0zll,, _ ZOY? +Z ()"

$1/2 $1/2
0"\ Z @
(”(%(t)) ) 7
=+ ) T L

A7 T
(since, by (IX), t¥/2|®|Y/2 = o1/2.2(t)*/?|u(t)|/?)

_ 1/2 M)W
(48) a+pona (KD
since, also by (IX), |®o|*/? = ¢¥/2.2(1)}/2|v(1)|*/2.

We now want to show that (4.8) is bounded above and below. To this end,
observe that 1 < 1+ |v(t)| < 2, and that 0 < ¢g < #(1)1/2 < ¢3 since M is
compact and Z (1) > 0 ([17], [18] again). For the final expression in (4.8), we
notice that since v does not contain a zero of ®g, it does not contain a zero
of v(1) = ®g/(c#(1)). Since |v(t)] is increasing by (4.6), for t > 1 we have

y 1/2
(4.9) 0< m’;lnlu(l)llﬂ < (llv((;))ll) <1,

and the statement follows from l,, (v) = [, 18/9z|,, ds..

(c) We cannot define a o-orthonormal frame field 8/9z, 3/dy at a zero of
®q. However,

18/04ll,, = # (2 - L (B2,
away from a zero of ®¢, and
12 _ (/=12 — (1 1y 2 ([P
- 20V = - pone e ()
< (- ONF W
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away from the zeros of @y by (4.7). Since both sides are continuous at the
zeros of ®p, the inequality holds everywhere, and so

o, (1)t =171/ f OV - Z )" ds,
7

< / (1= [ (O)Z ()2 ds,.

Since [v(¢)| > 0, the right-hand side converges to zero by Proposition 4.3 and
the Dominated Convergence Theorem.

5. Local variational formulas

5.1. A computational method. Choose a complex basis @;,- -,
®3,_3 for QD(0); then we can consider the associated local coordinates for
T,. Specifically, for ¢ = (t3, - ,t35—3) € C3973, define ®(t) = Y t;®, and
consider the metric

(5.1) p(t) = ®(t) dz* + oe(t) dz dz + ®(t) d2*.

The identity map id: (M,s) — (M, p(t)) is harmonic; in this section, we
investigate how geometric quantities associated with a harmonic map vary
as functions of ¢, for small t. Our approach will be first to determine the
variations of /7 (t) and .#(t) for small ¢; and then to apply those formulas to
equations (I), (II) and (IV) to derive the variations JZ (¢), v(t) of e(t). The
computations are straightforward after a single observation.

Lemma 5.1. ZH)>1. Zt)=1let=0e2(1)=0.

Proof.  As we noted earlier, Sampson [17] and Schoen-Yau [18] both proved
#(t) > 0. So log # (t) is a well-defined function on all of M. Suppose # (t)
has a minimum at p. Then

(VI) 0< Alog# =2 -2 - 2.

Since .&¥ > 0,
Zt)p) 2L +121.

But p is a minimum for #, so we see Z(t)(g) > 1 for all ¢ € M. Also, if
A =1, then 0 = Alog# = 2(1) — 2% — 2, and so .Z = 0. Hence the map
is conformal and p(t) = 0. q.e.d.

The rest of this section is devoted to computations of the ¢-derivative of
various quantities associated with the harmonic maps. (We emphasize that in
contrast to the previous section, ¢ is now a complex variable.) We postpone
discussing the t-smoothness of these quantities until after Corollary 5.4.

Corollary 5.2. (i) 8/9t*je#(t) = 0.
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(1) 8/0t*|o-ZL(t) =
= ?{; /

(iii) 8/0t*|ov(t)
(iv) 8/0t*1oZ (t) = O (Ahlfors’ lemma; see [2, Lemma 2]).
(v) 8/0t%|oe(t) = 0; 8/3t*|o E(p(t)) = 0.

Proof. (1) Z(0)=1,7Z(t) > 1.
(i) Z0)=0,Z()>0
(iii) ®(t) = o & (t)U(t). Applying 9/9t%|q to each side,

o~

0

B =0 | FOP0)+ a7 (0) 55| )
o | _ .
0 01/(15) by ().

(iv) F(t) = Z(t) — Z(t); (iil) shows this to be equivalent to Ahlfors’
lemma.

(v) e(t) = Z(t) + 2 (t); E(p(t)) = [ e(p(t)).

Let Sym(0,2) denote the space of symmetric (0,2) tensors on M, and .#
the space of positive definite symmetric (0,2) tensors. Now, forgetting the
complex structure on Ty, the family p(t) is a 6g—g (real) dimensional subspace
of . # C Sym(0,2) with coordinates coming from the real basis {®;,i®;} of
QD(o). Since .# is open in Sym(0,2), we can identify T,.# with Sym(0, 2);
then, using Corollary 5.2(v), the tangent vector to the one real parameter
family p(t) = t®¢d2? + oe(t) dzdZ + t®g dz? is given by &g dz? + B dz® =
2Re{®odz%} € Sym(0,2). Thus we identify 7,7, ~ QD(c). All of this is
developed slightly differently in Fischer-Tromba [6]; they go on in [7] to show
that the natural L? inner product on 7,.# descends to a metric on 7y given
by

0,92

(@, ®5) = 2Re/ dA(0).

This metric is called the Weil-Petersson metric for Ty; its hermitian form is

(5.2) (<I>1,<I>2)wp=/q:ifl)2 dA(0).

The metric is known to have negative sectional curvature, not to be com-
plete but to be geodesically convex (see [27], [26], [28]).

We now continue our computations.
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Proposition 5.3.

(i) 3tf;t§ 03 (t) = q);—g;ﬂ;
i ZH=0= 8;;5 2
() 2| 70 = -aa -2 23
], 70 =0= 22| 70,

Proof. Our method is to take t-derivatives of equation (III) to determine
the ¢t variations of .Z(¢); then we use that information to solve for the ¢
variations of /#(t) in the ¢-derivatives of equation (VI). This method is in
fact quite general: we discuss it more after Corollary 5.4.

For convenience set ®(t) = t*®,+t7®5. Then equation (III) can be written
as

2Z ()L (1) = (@) = [t]2]®a[? + 2P 0,Tp + Pt BoBp + |t7]2|05]%,

Applying 82/8t*8tP|y to both sides gives

. 9 3
o [3(0) W'%(t)-*-é—t;% atﬂ‘g
2
270 |20+ 70 2s20] 2.8

Corollary 5.2(ii) and Lemma 5.1 reduce this to the first part of (i). The
other part of (i) is analogous.

Now apply 2/(9t*8tP) to (VI) giving, after changing the order of differ-
entiation,

2 o 1s]
A(Z(0 = t)— —| Z@) —=| Z@1))/#(0)?
( ()ataatﬂo (t) o), ()atﬂo (t))/#(0)
92 92
= — F(t) -2 —| Z(t).
t*dtB |, (t) ateoth | )

Corollary 5.2(ii), Lemma 5.1, and the above computation of (82/8t*8t%).Z (t)
give
82
Aot |y
which yields (ii).

82
Atadth 0

., %5
o2’

F(t) =2 H(t) -2
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Corollary 5.4. (i) 82/8t*8t8|qu(t) = 0; consequently, the section v(t):
T, — Belt(o) is Weil-Petersson geodesic at t = 0, where Belt(o) is the unit
ball of Beltrami differentials on (M, o).

(ii) (Wolpert [26), Royden [15))

82

®,%; @,95
_ _oy—1X¥a¥f Fa>p
dtadih Of(t) =-UA-Y)T -5 o2
(iii)
9? 1 P.D5  0,P5
Py Oe(t) = —2(A -2) o2 + poRE

(We note that the condition of being Weil-Petersson geodesic at a point
of T, requires only agreement through second order with a Weil-Petersson
geodesic through that point.)

Proof. Similar to Corollary 1.2; v(t) is Weil-Petersson geodesic since, by
Ahlfors [2], u(t) = t((®(a)/o) is Weil-Petersson geodesic at ¢ = 0, and so
agrees with v(t) through second order.

Remarks. (i) Royden [15] and Wolpert [27] derive the second variation of
hyperbolic area density along a Weil-Petersson geodesic (ii) with completely
different methods; that computation is the linchpin in their derivation of the
curvature tensor for the Weil-Petersson metric. We note that e(t) now has a
double role: it is both the energy density of the harmonic map w: (M,0) —
(M, p(t)), and it is the (1,1) part of the hyperbolic metric whose form in a
coordinate neighborhood is

(5.3) p(t) = ®(t) d2® + oe(t) dzdz + B(t) dz°.

Since the slice p(t) is Weil-Petersson geodesic at ¢t = 0, the formulas of Wolpert
and Royden, together with the Ahlfors lemma, would have been enough to
prove (iii) in the second interpretation of e(t).

(ii) If we know the first n derivatives of #(¢) and £ (t), then by taking the
(n + 1)st derivative of equation (III), we can derive the (n + 1)st derivative
of Z(t). If we know the first n derivatives of #(t) and the first n + 1
derivatives of £ (t), we can derive the (n + 1)st derivative of # (t) by taking
the (n+ 1)st derivative of equation (VI). Thus we can recursively compute all
of the derivatives of Z(t) and .£ (), and hence compute an explicit formal
power series expansion for p(t) (using (5.3)). In a forthcoming paper, we will
show that this series converges for small |¢|.

(iii) We can continue this program to find that all of the odd derivatives
of #(t) and .Z(t) vanish. We expect this since #(t) and .Z(t) are solutions
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of the equations Alog Z(t) = 27 (t) — 2|®(t)|? /(02 #(t)) — 2 and Z(t) =
|®(¢)12/ (0% (t)), both of which depend only on the modulus of ®(¢) and not
on its argument.

(iv) We can compute the formal power series expansion in ¢ of v(t) to
any order, say k. Corresponding to such an expansion is a C* variation in
hyperbolic metrics (Ahlfors-Bers [2]), and hence a C* variation in the har-
monic maps by a theorem of Sampson [17]. Consequently, all of the quantities
associated to the harmonic maps are C* in ¢.

(v) In a remark at the end of §3, we noted that we could pursue a study
of T, through equations (III) and (VI), using QD(o) (instead of the Beltrami
differentials, Belt(c), on (M,o0)) as a parameter space. Both QD(o) and
Belt(o) are linear spaces, but we do not expect the rays to correspond. From
Corollary 5.4(1) and Remark (ii) above, we see that the rays agree through
second order, but no further.

Definition 5.5. Set D = —2(A — 2)~! where A is the Laplace-Beltrami
operator on (M, o).

Then D is a self-adjoint, compact operator which is the identity on the
constant functions.

The technique of (ii) yields

Proposition 5.6.

84
—| Z(t)
OtedtP At dtd |
: $,%5\ 9,95 3,85\ 9aPp
@ =_[D< o2 ) ;2 +D ;2 o2
o () (5) oo (58) 2]
g e} (2} g
. o4 ot
1 —_— - ————
(1) Ateth 91018 Og(t) AtEOtP It 088 Og(t)
04
AtEIP LTt |
04
= ——— g(t) = 0
AtEOBITO® |g

5.2. The geometry of the energy function. Next we interpret these
formulas in terms of the geometry of Teichmiiller space. We can consider
the total energy of the harmonic map from (M, o) to (M, p(t)) as a function
E(0; p(t)) on T,. It is not hard to show that E(o; p(t)) has a global minimum
at t = 0 (see [11]). Since ¢ = 0 is a critical point of E(o, p(t)) (also shown by
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the second part of Corollary 5.2(v)), the Hessian of E(o; p(t)) is a coordinate-
independent inner product on T,,Tg.. So, using the properties of D, we find
that Corollary 5.4(iii) implies

Theorem 5.7. Hess E(0;p(t))|o(Pa: Ps) = 2{Pa, Pg)wp-

Closely allied to E(o; p(t)) is the function E(p(t); o), the total energy of the
harmonic map from the variable source (M, p(t)) to the fixed target (M,o).
Tromba [23] has proved a result analogous to Theorem 5.7 for this function
which we now show follows formally from Corollary 5.2.

Corollary 5.8 (Tromba [23]). Hess E(p(t);0)|o(Pa,®s) = 2(Po, Ps)wp-

Proof. Let p(t®,t%) = &7 1(t%®, + t#®s) and p(t*) = &~1(t*®,); also
let . (p1; p2) be the anti-holomorphic energy density function (on M) of the
harmonic map from (M, p1) to (M, p2). Then we have

0= —

| L),

to=0

because .Z (p(t?), p(t*,t#)) > 0 with equality only when ¢, = 0. Thus

o 1)
0= — — Z(p(t?); p(t>, 8
py I B (p(t"); o )
1)
= = Z(p(0); p(t*,t%)) + | Zpt*); p(t?)).
S|, T POt N+ s | FeE)ie)
Similarly
0= 2| 200,19 0)
AtBAt* oo '
0?2 &z 8 2 K B
= —— t*,t%); p(0)) + = £%); p(t7)).
3297 |, (o( ); p(0)) 3201 g (p(t%); p(t7))
So
9?2 a? )
=|  ZL(p(t*,tP);0) = - = Z(p(t*,t?)) = =5 2
Ot tB |40 12918 ;g o

Since the same technique works for /7, the theorem follows immediately from

e=H# +.7. ;
Royden (15], Tromba [24], and Wolpert [27] have recently computed the

curvature tensor for the Weil-Petersson metric in terms of the operator D.
Theorem 5.9 (Royden, Tromba, Wolpert).

_ @azfg @755 o,D;s 5543.7
Raﬁwﬁ“/M (D o2 ) o2 +(D o2 )( o2 dA(o).

By coincidence of formulas we find
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Proposition 5.10.
34
——— e E 0', t = _4R - —(o).
ot At It 9td /t=o (:p() afr3 (%)

Proof.
E(o; p(t)) —4m(g—1) = /6(0, p(t)) dA(0) -/f(U;P(t))dA(U)

= 2/3(0; p(t)) dA(o).
So
o4 04
At gtBat ats | (7:6(2)) At dth JtVotd
Remark. Because our coordinate system is geodesic at ¢ = 0, and the
Weil-Petersson metric at p(t*,t#) is given by
L@
2 atvots

Z (0 p(t)) dA(0).

E(p(t*,1%); p(t*, t%,17,1%)),
te=té =0

we know that
34

- - ._l_____________ a 316y a 1B 4y 46
Raﬁ—yé(a) - 2 8t°‘8tl_’8t’78t5 E(p(t ,t )ap(t ,t 3 at ))

0

Thus, Proposition 5.10, since it does not involve a variation of the source met-
ric, is somewhat surprising. Recently, Jost [12] has used the above methods
to compute R aEqE(U) via the energy of harmonic maps.
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